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ABSTRACT

A numerical method to predict the aerodynamic forces aciing on a
thin airfoil operating in an unsteady potential flow is developed. A
distribution of discrete point vortices placed on an arbitrary camber
line represents the airfoil. The time dependent solution including
wake generation is obtained starting with the system at rest. A rigid
wake assumption is used where the wake vortices lie in the directicn of
the chord line and move with the free stream velocity. The results of
the numerical solution are shown to agree with results using the
classic theories of Theodorsen for the oscillating airfoil and of
Wagner for the impulsively started airfoil.

Using the numerical method, a parametric stuay is conducted to
determine the time history of the loads on an airfoil produced by a
vortex passing in proximity to the airfoil. Results of the study are
compared to an experimental investigation of the rotor blade-vortex
interaction problem, but agreement was not obtained. The general
trends of the experimental parameters are confirmed by the theory,
but the magnitudes of the fluctuating blade loads are overestimated.
Satisfactory agreement is .obtained, however, by correcting the two-
dimensional results for finite aspect ratio effects using the Prandtl

tip loss factor.
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C(k)

h|

i,j,k

NOMENCLATURE

Position of axis of rotation, defined in Figure 1.
Airfcil semichord length.

Airfoil chord length.

Theodorsen function, F(k) + i G(k).

Section 1lift coefficient, £/(1/2 o V2 c).

Maximum difference in C£ in a vortex sweep.
Section steady state 1lift coefficient.

Section moment coefficient.

Listance of vortex above or below airfoil.
~oordinate >f blade motion in vertical direction.
Summation indices.

Reduced frequency, w b/V.

Section lift.

Number of time increments.

Number of vortices on airfoil.

iv



t,At

AT

Greek

y(x)

I'(m)

Distance traveled in semichords.
Time and time increment.

Time interval between positive and negative peak
C£ values in vortex interaction.

Free stream velocity.
Resultant velocity due to vortex and fiee stream.
Horizontal component of Vr

Herizontal distance of vortex from airfoil leading edge.

Angle of attack of airfoil.
Vortex induced angle of attack.

Phase angle for steady state approximation to
oscillating airfoil.

Intersection angle of blade and vortex.
Distributed bound vortex strengt.: per unit length.
Circulation at time m.

Strength of passing vortex.

Frequency of oscillation
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£ Control point location on airfoil.
P Fluid density.
¢ Phase ang.e for unsteady solution to oscillating airfoil.

¢(s) Wagner function.
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I. INTRODUCTION

-

.:> interaction of an aerodynamic surface with a vortex is of
current interest for two reasons. First, the flight of a light air-
craft into the wake of a hes :>r one can be hazardous. Uncontrollable
rolling moments can be experienced when flying parallel to a trailing
v¢ tex and severe turbulence is experienced when flying through the
s.-tex perpendicular to the axis. The second reason concerns the
10ise and blade stresses produced during helicopter operations. A
Yielicopter blade can intersect the trailing vortex shed by another
blade ~:using a rapid fluctuation in the blade loads. This inter-
section ‘5 known to be the source of the familiar blade slap noise.

The present study is concerned with the airfoil-vortex inter-
action problem. A numerical technique using discrete vourtices is
developed to predict the forces acting on a two-dimensional thin
airfoil in the unsteady flow produced by a vortex passing close to
the airfoil. The usual restrictions of potential flow are imposed
on the problem.

The computational model consists of a number of bound vortices
placed on the mean c.mber line of the airfoil section and shed

vortices starting from the trailing edge arnd lyi.g in the wake in



the direction of the cho-d line. The unsteady problem starts from
rest. At each time increment the airfoil sheds a vortex at the
trailing edge which moves downstream with the velocity of the free
stream. The airfoil-vortex interaction problem is modeled by placing
a potential vortex in the flow upstream of the airfoil. This vortex
then moves downstream past the airfoil as time progresses. The vortex
moves with the free stream velocity and the induced velocities of the
bound and shed vortices. Figure 1 illustrates the problem and defines
the coordinates.

The digital computer program used in the study is written in
Fortran IV language and appears in the appendix. An IBM 360/67

computer was used for the calculations.
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II. PREVIOUS INVESTIGATION

The objective of the present study was to -levelop a method using
two-dimensional thin airfoil theory to predict the time history of
the forces on a rigid helicopter blade operating in the influence of
a vortex. The first step was to develop a numerical procedure to
accurately describe the unsteady aerodynamics of the blade itself
operating in some time-dependenrt flow field. A model capable of
producing a detailed chordiwise pressure distribution and capable of
generating its own wake from the start of the problem was formulated.
To select such a model the work of others in numerical unsteady aero-
dynamics was reviewed.

Two-dimensional, unsteady aerodynamics with linearized equations

18
has been considered in detail by the classic methods of Theodorsen |,

von Karman10 and Searslu. The nonlinear effects of thickness and wake
distortion have been accounted for by Giesing5 using a distribution of
doublets on an airfoil. Giesing has solved the problem numerically
and has found the nonlinearities to act in general to retard any
change in the lift. The experimental results of Spurck16 for airfoil

oscillations in a wind tunnel confirm Giesings' results and show that

the real fluid effects also retard the lift build-up. A detailed



discussion of the deforming wake as it applies to the present study is
discussed in Section III. The three-dimensional problcm of a wing
moving unsteadily in a potential flow has been solved by Djojodihardjo
and Widnalla. # numerical solucion to an integral equation representa-
tion of the wing and wake is giver including thickness and wake roll-
up effects.

The proper numerical genera.ion of the shed vortex wake has been
investigated by Pizialila. Nornally, a wake is generated by sheding
a vortex into the wake at each time increment where the first and each
new vortex is formed slightly downstream of the trailing euge. If the
distance from the trailirg edge of the shed vortex is equal to the
wake element spacing, VAt, in the limit «f infinitesimal time incre-
ments, the wake is continuous and emerges from the trailing edge as
a sheet. Piziali, however, has found a model which advances the wake
toward the trailing edge by an amount equal to 7/10 of the wake
element spacing to give the best results when compared to the
Theodorsen function for an oscillating airfoil. For the advanced
wake, the first and each newly shed vortex appears 3/10 of the
spacing downstream. This somewhat artificial representation of the
wake has not been used in the present study.

The effects of wing (or helicopter blade) and vortex interaction
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has been the subject of a considerable amount of recen* research
11,15,17,19 ‘

Theoretical! studies have been made with varying degrees
of simplification and experimental investigations have been carried
out using both model and full scale testing.

The steady state case, where the wing and infinite vortex are at
zero relative velocity, has been solved for three-dimensional wings.

A lifting line theory is used by Jones and Rao9 and only slight im
improvements have been made using a lifting surface theory shown by
Kfouryxl.

The unsteady case, where the wing passes through a near the
vortex has not yet been completely solved for the three-dimensionzl
case. Johnson?’8 uses a lifting surface theory on an infinite
aspect ratio wing and has found the simplified lifting line approach
inadequate. His paper calculates the peak to peak section lift
coefficients obtained as a blade cuts through a vortex and compares
them to the experimental study of Surendraiah17. Although the lifting
surface theory does not always agree with the experiment, it is con-
sistently much better than a lifting line approximation.

Surendraiah's experimental model consists of a single bladed

rotor, 2 inches in chord and 12 inches in span, fitted with four

chordwise pressure sensors located at a spanwise station of 95 per cent



of the rotor's radius. The rotor was operated at a high advance ratio
in the proximity of a tip vortex generated by a fixed wing upstream.
The rotor was rigidly mounted at a zero collective pitch without
lapping or lagging. Data was taken for rotor piane positions above
and below the vortex axis and for different intersection angles. Two

values of rotor RPM and vortex strengths were used.



III. DEVELOPMENT OF THE UNSTEADY COMPUTATIONAL MODEL

Considerations from Thin Airfoil Theory

The potential flow about an airfoil can be calculated using two-
dimensional thin airfoil theory to determine the pressure distribution
and forces acting on the airfoil. The flow must satisfy the condition
that the velocity normal to the airfoil surface be zero. In the
classical solution a continuous distribution of vortices is placed on
the camber line. Their strengths are then adjusted to induce veloci-
ties which ; when added to the free stream velocity, give resultant
velocities tangent to the camber line. If the strength of the vortex
sheet is y per unit '2ngth, an element of strength ydx placed at x
will induce a velocity perpendicular to the airfoil at point ¢ (for

small camber as:

dv = vydx/2n(x-£) . (1)

The total velocity induced at £ by the distribution of vorticity is

given by the integral:

c

1/2m I (v (x)dx/ (x-€))dx . (2)

o

v



The induced velocity at £ must equal the component of the free
stream normal to the chord at this point to insure no flow through the
airfail. If z is the vertical displacement of the mean camber line

from the chordline, the relation is:

C

1/2n f (v (x)dx/ (x-£))dx = -V(a-(dz/dX)E) . (3)
0

A y distribution may now be specified given an airfoil geometry
and angle of attack. Some restriction must be placed on the choice
of a y distribution to insure the flow will leave the trailing cdge
smoothly as observed experimentally. Any nonzero y at the trailing
edge will give an infinite velocity and therefore y is restricted to

zero to satisify the Kutta condition.

v (c) 0

1 is shown in a number of aerodynamics texts, as Reference 4,
that the y distribution which satisfies both the tangency and Kutta

boundary conditions is given by:
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y(x) = 2V[Ao(l + cos 8/sin 6) + I An sin né] (4)
n=1

where

™
Ao = o - 1/n [ dz/dx do
o

m
An = 2/7 J dz/dx cos ne dé
)

8 = cos | (1 - 2x/c)

Since the y distribution is known (given the airfoil geometry and
angle of attack), the lift and moment can be computed by considering
the velocity just above and below a vortex sheet. The circulation

around a differential element of a vortex sheet is:

2 AV dx = vydx (5)
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A Bernoulli equation is now written between the upper and lower

surfaces. If the pressure at a distance for from the airfoil is p_,

2
12 p V + P,

2
1/2 p (V+AV) +p +p 3¢u/3t (6)

and

2 2
1/2 p V + P, 1/2 p (V-4V) + Py +p 3¢£/3t (7)

The difference in pressure across the airfoil is given by:
Ap = pVy + 03/3t (¢, - ¢,)
The 1ift per unit span is the integral of the chordwire pressure
difference.
c

L= j Apdx

0
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or

c

L= oVl +p j 3/ot (¢u-¢£)dx (8)
o

The second term represents the lift due to unsteady pressures
and is equal to zero for the st .dy state problem. Nondimensionalizing
by the free stream dynamic pressure and chord, the section 1lift

coefficient becomes:

Cp = 2/Ve J ydx (9)
When the expression for y is reduced to the case of a .lat plate
airfoil, the C£ is given by:

C, = 270 .

The moment coefr:cient is written about the axis of rotation, a,
as shown in Figure 1. It is noted that the axis position is in terms

of semi-chord lengths, b, and is positive downstream of the mid-chord.
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The distance from the axis to a vortex position x is given by

b(l + a) - x. The moment coefficient, where .:ose up is positive, is:

c
Cm = - 2/Vc2 j (b(1l+a)-x) ydx . (10)

o
For the flat plate airfoil, the expression reduces to:

Cm = n/2 (1+2a)a

Steady State Computational Model

The computational model is based on the premise that a discrete
number of point vortices placed on the mesn camber line of a thin
airfoil can approximate a continuous distribution. Figure 2 shows
the geometrical arrangement of the vortices for the case of three
control points. A control point is defined as a position where the
velocity components are added to satisfy the flow tangency boundary
condition. It is noted that the chord length is divided into equal

length panels with a vortex and control point loca:2d at the 1/4 and
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3/4 panel length positions respectiv .y. The placement of the vortices
1s an extension of the Weissinge. lifting line approximation and has
proved to give satisfactory results in both steady and unsteady caicu-
lations. The Kutta condition is met automatically using this model
due to the fact that the last control point is placed downstream of
the last vortex. This placement allows the last vortex to have what-
ever strength required to give smooth flow from the trailing edge.
When shed vortices are introduced for the unsteady problem, the last
vortex may have a strength mu.h greater than zero due to the induced
velocities from the shed vortices. In the limit as Ax approaches the
differential quantity dx, the statement of the Kutta condition,

vy(c) = 0, will be met.

James ° has shown conclusively that the choice of 1/4 and /4
points is both optimum and mandatory for the solution of any vorticity
distribution in the steady two-dimensional problem. Exact lift and
moment values are obtained regardless of the number of vortices
ylaced on the airfoil. The value of Y; at the first point vortex
:ucation is computed 12.4 per cent below the continuous value near
tire leading edge singularity for the flat plate airfoil. The Y
valves computed downstream of the first have negligible error.

The previous equations, in terms of a continuous y(x), are now
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Figure 2 Three vortex computational Model
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written in a finite difference form. Equation 3 at a control point

Ej for n bound vortices becomes:

n
1/2x% 121 yiAx/(xi-Ej) = - V(a - (Az/Ax)j) (11)

The above expression leads to a matrix formulation of the problem
of order n when all n control points are considered. For the example

case of three vortices, the equations in matrix form are:

— - _ _ —
A A A vy Ax B
11 12 13 1 1
A A A y Ax = B
21 22 23 2 2
A A A y Ax B
31 32 33 3 3

— ~ - — L

The coefficient matrix, A , represents constant values determined
1)
from the geometry. The constants Bj represent the normal component

of the free stream velocity at the control point.
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A matrix of this form is solved by conventional means since it is
square, linear, nonsingular and has constant coefficients. The method
chosen to solve the matrix is the Banachiewicz - Crout algorithm which
15 essentially a process of successive elimination of unknowns by
algebrzic manipulation. The method has been programmed by Degelman2
and used as a subroutine of the main program shown in the appendix.

With the values of the vortex strengths known, the lift and

moment coefficients are computcd using thc finite difference form of

equations 9 and 10.
n
C, = 2/Vc I vy.Ax (12)

2
= - z
C. 2/Ve L

L (b(1+a)-xi)YiAx (13)

Figure 3 shows the y distribution on a flat plate airfoil obtained
using a 3 and 6 vortex model. The yivalues at the downstream

stations are nearly exact while the first is about 12 percent low.
The accuracy of the 1lift and moment calculations is exact for both

6
cases which confirms the results of James . Note that the Y; values

have been converted to an equivalent distributed value to compare

with equation 4.
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Unsteady Flow Considerations

The physical principle which is of primary importance to unsteady
problems is the conservation of circulation. The time rate ot change

of bound circulation and the wake circulation must be zero.

dr/dt = drb/dt + drw/dt = 0 (14)

Equation 14 is a result of Kelvins' theorem and states that the net
circulation around both the airfoil and wake must remain a constant.
Thus if the bound circulation changes due to flow fluctuations or
airfoil motion, there must be an equal but opposite change in the wake.
The circulation chauge in the wake is known to take place at the
trailing edge in the form of shed vortices.

The vortex sheding procedure in two dimensions is shown in
Figure 4. At time tl there is no circulation on the airfoil or in
the wake and at time t2 the airfoil increases its angle of attack and
sheds a starting vortex equal to the strength of the bound vorticity
at that time. The shed vortex is formed at the trailing edge as At

approaches zero for the continuous case and cach new wake vortex has

a strength equal to the change in bound circulation. The shed



ar=a)+ia

a3=ar+ia

ay=a3-Aa

20

starts from rest at zero

t=t M= .
L I lift or a known value
starting
t=t2 ry ‘Fz/_ vortex
[ 4 ‘ﬂ
) U
] vae
t=t3 l-‘3 -(1‘3-1‘2) ‘rg
a a
M \J \
t=t, Ty _(ry-r3)(r3-r3) -rp
-\ -

Figure 4 Unsteady Vortex Sheding
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vortices move downstream with the free stream velocity and their path
is influenced by the induced velocity of one element on another. The
vortex sheding process continues until steady state conditions are

reached, that is, the bound circulation does not.change with time.

Computational Model Changes for the Unsteady Case

The difference in the equations forming the matrix in the
unsteady problem is the influence of the shed vortices on the velocity
induced at 2 control point. At time tz, as shown in Figure 4, the

12)

velocity at a control point due to the bound vortices at t2, v\,

the first shed vortex, -FZ, and the free stream is:

=

n
(2) (2) -
1/27w iil vy Ax/(xi-zj) - 1/2n 151 i Ax/(c-£j+VAt) =

(15)

- V(o + (Az/Ax)j)

Writing equation 15 for all n control points and solving the matrix
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(2)

for \f , the value of rz is computed as:

Yi(2) Ax

—
I
II.M-':’

During the time interval t2 to t3 another shed vortex is formed
of strength -(Fs-rz). The first shed vortex continues to move down-
stream to a position 2VAt from the trailing edge. The velocity at a

control point influenced by two shed vortices at time t3 is:

ar 1y, @ ax/(x-€.) - 1/2n]
it (*3-%5 Tt

n os

yi(3)Ax-F2]/(c-£j + VAt)

i=1

- 1/27 FZ/(c - Ej + 2VAt) = - V(o + (Az/Ax)j)

As time proceeds, the prccess adds another shed vortex at each

time increment. A general form for a time interval m is:
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PN () Y. (m)
1/2m g oy " bx/(x;=€5) = 1/2n[ T y; " Ax=T (m-1)1/ (=€ +Vat)
i=1 i=1 J

(16)
(m-1)

1/2n & (I -T(k-1))/(C-£.+(k+1)VAt) = -V(a+(az/bx},)
kel j j

It is noted that the unknown y distribution appears both in the
expression for the bound and new shed vortices' influence on the
control point. This property of the unsteady problem changes the
form of the coefficient matrix used in the calculations.

The 1ift and moment can be computed using the unsteady Bernoulli
equation. The unsteady part of the equation makes a contribution to

the lift (from equation 8) as:

Cc

o | arat (4,-0p) ax

o)

A velocity pctential is written from the leading edge to a

position x on the airfoil for the upper and lower surfaces.

X

0, = f (V + AV) dx

(o]



Then

and from equation

The total lift in

The unsteady lift

and the other due

24

X
¢£ = J (V-4V) dx
o
X
- ¢£ = j 24V dx
o
5
X
- ¢£ = J vy dx (17)
0

terms of the y distribution on the airfoil is:

Cc X

ydx + »p f [a/0t j y dx] dx (18)
0 o

is composed of two parts, one independent of time

to the time rate of change of circulation around
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the airfoil. Althcush part of the lift appears to be independent of
time, it is not the same lift that would be computed using steady
state methods. The y distribution is altered by the wake, and the
time history of the unsteady motion must be known to compute the wake
structure. The second term of equation 18 is not to be confused with

10
the term "added" or "apparent mass' used in the classical theories ’

Ha 18 Apparent masses are characteristically independent of the past
history of the motion and are noncirculatory in nature.

Airfoil motion may be defined as angular rotation about some «xis
on or off the airfoil and vertical translation of the axis. Either
motion induces velocity components normal to the airfoil and must be

included in the sum of velocities at each ccntrol point. A positive

rotation (nose up) effects each control point as:

v = da/dt [b(1 + a) - £.]
a J

A pusitive vertical motion effects all control points as:

- dh/dt

. <
n
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The direct integration of the unsteady Bernoulli equation provides
a convenient means of finding the fcrces on an airfoil in a numerical
procedure. Problems of airfoil motion or flow unsteadiness can be
handled since the bound vortex distribution and wake structure is
generated at each time increment for any inflow condition. Airfoil

motion or gust structure is not limited to any particular type.

Discussion of the Wake Geometry

The preceding unsteady model assumes the shed vortices lie in the
x direction and move downstream with the flow velocity. In reality
the wake rolls up under its own influence and the influence of the
bound vortices. Djojodihardjo and Widnall3 have shown the .ffects of
using three different wake geometries for the impulsively started
airfoil problem. With the lift build up produced by a rree wake (or
field-induced wake) as the standard, the rigid wake assumption gives
essentially no error for small angles of attack. Even at 0.3 radians
the difference is less than 4% for the first 1.25 semi-chord lengths
after starting. As the distance traveled increases the results for
the free and rigid wake approach each other. No significant difference

is noced between a rigid wake which lies in the x direction or cne
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3
which is aligned with the velocity vector. Giesing compares a

deforming wake result to the Wagiuer function for the step change in
angle of attack problem and also shows the free wake to slightly
retard the lift build up.

Giesing5 has also compared the nonlinear results to two other
classical problems which are the Kussner function used to find the
l1ift on a flat plate entering sharp edge gust and the Theodorsen
function used to rind the lift on a flat plate executing periodic
motions of small amplitude. The Kussner function was found to be
unaffected by the nonlincarity even for the case where the vertical
gust velocity is half that of the free stream. The Theodorsen function,

however, is affected by the deforming wake by an amount proporticnal

to the amplitude of the motion and its reduced frequency, k.

k = wb/V

The deviations from the linear theory increase with increasing ampli-
tude and reduced frequency. For vertical oscillations with an ampli-
tude of 0.06 C, the nonlinear effects are noticeable above a k of 1.0,

The 1ift is always nearly in place but the maguitude is above that
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calculated by linear methods. At an amplitude of 0.3 C, the circula-

tory lift is twice that predicted by Theodorsen at a k of 1.0. The

noncirculatory effects are important at large amplitudes and high

frequencies, however, and should be considered when comparing the

total lift obtained from linear and nonlinear methods. These effects
2

are proportional to k and can completely dominate the lift at high

reduced frequencies.
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IV.  COMPARISON OF UNSTEADY COMPUTATIONS TO THEORY

Before applying the unsteady numerical solution to the airfoil-
vortex interaction problem, its validity was assessed by comparing it
to the Theodorsen fun  n for an oscillating aivfoil and the Wagner
function for the impulsive start problem. A comparison with the
Theodorsen function provides a check on both circulatory and '"added
mass' parts of the lift and the Wagner function comparison is of
importance since a numerical method requires small step changes in
the inflow to proceed from one time step to the next. A satisfactory
comparison with both Theodorsen and Wagner functions will give con-

fidence in the results obtained for any other problem.

Theodorsen Function Comparison

The problem of an airfoil oscillating in the vertical and
rotational coordinates is considered. The theoretical expression

of the 1lift for this case is written:

£ =2mp VCE)[h' + Va + b(1/2-ada]
) (19)
+7pb [h'+ Va - baal



Where C(k) is the Theodorsen function made up of real and imaginary

pa.ts as:

C(k) = F(k) + i G(k)

Equation 19 is derived for harmonic motion where the vertical

coordinate h' and the rotation angle o are written:

h' = h el¥t (20)
@« = a et (21)

Substituting the above and their time derivatives into equation 19,
2
separating the real and imaginary parts and normalizing by pV b. The

following expression is obtained for the CZ:

A elt+e) (22)



where
- 2 2 1/2
A = (BB + CC)
o = TAN™ ' (CC/BB)
and
2 t 2
BB = ® [ao(k a + 2F - 2Gk(1/2-a)) - ho(k /b + 2Gk/b)]
CC =

m [a, (k + 2F (1/2 - a) k + 26) + h; (2Fk/b) ]

A is the amplitude of the lift predicted by Theodorsen and ¢ is the
phase angle. To compare this result to the lift calculated by steady
state methods, consider the Cp obtained using only the instantaneous

vertical velocity and angle of attack:

2n(a + h'/V)

C£§s
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Again using equations 20 and 21 and their time derivatives, an

expression for the steady state lift coefficient can be written.

(23)

where

2

' 2 1/2
Zw(ao + (who/V) )

&

oo
I

-1 '
TAN [(who/V)/ao]

The ratio of the actual C£ to that computed with stezdy state methods

becomes:

Ct/Czss = AfAss el (0-6)

For illustration the ratio of Czlcpss and the phase difference
(¢-8) are plotted as a function of reduced frequency on Figure 5 for

vertical cscillations and Figure 6 for rotational oscillations. The



theoretical magnitude ratio and phase difference are shown as solid
line: and the data points are values obtained by the numerical computa-
tions.

The computations were made using six bound vortices to represent
the y distribution. This was found to be a satisfactory number for
the reduced frequencies tested. Increasing the number improves the
results only slightly at high k values.

Typical results from the numerical computations are shown on
Figure 7. The ratio of CZ to maximum Czss is plotted against wt for
k's of 0.2 and 10. Values obtained using the computational model are
in agreement with Theodorsen's results both for a k of 0.2 where wake
effects cause the greatest phase lag and for a k of 10 where the non-
circulatory effects are significant. The computedHCK value occuring
at the second peak is 4.5 per cent above the exact for a k of 0.2 and
8.0 per cent above a k of 10. The errors generally increase with k
and fall within the range of 0 per cent at a k of zero to 8 per cent
at a k of 10.

The accuracy is a function of how small the time interval is
between successive solutions. To obtain the accuracy quoted, it is
necessary to make 60 solutions per cycle for an amplitude of 0.15
radians. The time increment, At, for 60 solutions per cycle is

/30w,
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It is of interest to note the difference in lift calculated
using unsteady methods to that obtained assuming steady state as
shown in Figure 7. The k of 0.2 gives a 27 per cent reduction in the
amplitude and a phase lag of 7 degrees from the steady state calcula-
tion. The k of 10 gives a factor of 5 increase in the amplitude and

phase lead of 84 degrees.

Wagner Function Comparison

The Wagner function gives the 1lift build up on an airfoil after
an instantaneous change in the inflow conditions. A step change in
the angle of attack, for example, causes the lift to change as

function of time as:

2
M = mc p V Ao ¢(s) . (27)

The term ¢(s) is the Wagner function in terms of s, the distance
traveled in semi-chord lengths. The Wagner function is restricted

1
to positive values of s and is written as :

¢(s) = 2/m J F(k)/k sin ks dk ., (28)
k=0
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The integral ranges oi:r all reduced frequencies to irfinite values
which indicates that the step change problem is considered a motion
at an infinite frequency. The expression for ${(s. s not of simple
form since F(k) is expressed in terms of Bessel functions, but a

convenient approximation exists for ¢(s} which is:

$(s) = s+ 2/s+ 4 . (29)

The circulatory part of the sclution, that part which is time and wake
dependent, is the only part included in the Wagner function and the
contribution to the lift of “~= addey wass must be included for the
total .ift to k. obtained. It is only necessary to consider the non-
circulatory contribution at the very start of the problem, however,
since the inflow conditiurs change only at the start.

The commarison of the results from the computational model to
the Wagner function is shown by Figure 8. It is clear that the
accuracy of the computation depends directly on the ti-e interval At
chosen. This property is related to the fact that at the start of
the problem, the inflow conditiocis change instantuneously causing a

strong starting vortex to be shed which greatly effects the lift.
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For this reason a detailed description of the wake is required at the
start. It is clear that in the limit of a zero At, the computational
procedure will give exactly the Wagner function except at the instant
of starting where the lift wouid be momentarily infinite due to the
added mass contribution.

The instantaneous y distributicn shortly after the start ot the
step change problem is shown in Figure 9. Notice that nearly as much
egative as positive y strength is present which indicates that most
of the lift is resulting from the rate of change of circulation rather
than the circulation itself. vy distributions of this general shape
appear frequently in the unsteady calculations and it is clear that
knowledge of the chordwise pressure distribution is necessary for

accurate lift and moment computations.
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V. APPLICATION OF THE COMPLUTATIONAL MODEL 70 THE
ROTOR-VORTEX INTERACTICN PROBLEM.

With confidence gained in the numerical method by comparison to
the classical theories, the method was applied to the rotor-vortex
interaction problem. The two-dimensional study was undertaken as an
approximation to the case where the helicopter blade intersects a
vortex whose axis passes parallel to the span as shown in Figure 10.
The intersection angle for this case is 90 degrees. The entire blade
enters the vortex at th~ :~m- time and a two-dimensional loading is
expected. For othe- -ect on argles, fluctuatiors in both span-
wise and chordwi: «.a .igc occur requiring an unsteady three-
dimensional approac -~ the problem.

The vortex interaction model is basically the same as the
unsteady airfoil problem with the addition of a potential vortex to
the free stream. The vortex induces a different velocity at ~uach
control pnint which modifies the bound vortex strengths required to
satisfy the boundary conditicas. The vortex also effects the path
of the wake vortices, but this effect is neglected since a rigid
wake is assumed. 1n turn, the bound and wake vortices effect the

path of the vortex due to their induced velocities at the vortex.
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In previous investigations of this problem, the vortex path has been
assumed fixed, unaffected by the blade and wake. The consideration of
the effect is fourd to be worthwhile when the blade passes near the
vortex.

Including the vortex into the program involves the computation
of normal and tangential velocity components induced at the control
points. The normal component alters the bound vortex strengths and
distribution required to maintain the boundary condition and the
tangential component increases the effective velocity across the
chord.

During the vortex interacticn, the blade experiences a resultant
velocity, Vr’ which is in general different fir>m that of the free
stream due tc the presence of the vortex. Since every control point
experiences a slightly different horizontal component of the resultant
velocity, Vi’ the 1lift is computed from the following integral con-

ining V .
taining N

c C X

o j Vx v(x) .dx + »p j [a/0t I vy (x)dx]dx (30)

o 0 o)

(a)
1]

The 1ift coeff’ . ‘:nt is based on the free stream velocity, however, as:
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2
C = L/1/2 o0V ¢

From experience with periodic 1ift fluctuatic , it was found
that a At which gives 60 solutions per cycle is reguired for
reasonable accuracy. The At for the vortex interaction problem was
determined by assuming the 1lift changes from a positive to a negative
peak in about one chord length. Assuming this to be like a half-
cycle, 30 solutions per chord length was used giving the following

expression for At.

At = ¢/30V

The starting position of the vortex was chosen as 2 1/2 chord
lengths ahead of the leading edge of the blade. While the furthest
distance possible is desirable from a long wake generation stand-
point, this value was found to be a practical limit when storage
space and computation time requirements are considered. This has
not been a severe limitation since the wake has proved to have its

greatest effect when the vortex is near the blade.
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VI.  ANALYSIS OF RESULTS AND COMPARISON WITH EXPERIMENT

Important parameters for consideration in the blade-vortex
interaction are shown on Figure 11. These include the initial
height of the vortex above or below the blade, h, the blade chord
length, the vortex strength, Fv, the positive and negative peak C2
values and the time interval between them, AT, and the maximum
ciffezence of the section 1lift coefficient, ACZQ

Typical computed C£ variation and vortex path time histories
are shown in Figures 11 to 14. The solutions correspond to
Surend"'aiah's!7 experimental conditions of 2000 RPM and a Fv of
15.25 ftz/sec. As the magnitude of h/c decreases, ACZ increases,
the first derivative of the Ct curve changes more abruptly at the
peak CzAV¢1ues, and the distance required “o go from positive to
negative peak CK values decreases from nearly two chord lengths at
an h/c of 1.0 to less than one chord length at an h/c of 0.1.

Figure 14 presents a comparison of the computed Cﬂ variation
through the vortex to a corresponding experimental trace where the

value and position of the positve peak Cp is matched to that computed.

The general shape of the Cz variation is similar although the
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computations predict a somewhat more rapid build up anc decay of the
lift.

Figure 15 shows the effect of using a quasi-steady approximation
to compute the fluctuating lifc on the blade. The lift is computecd
including the unsteady term in equation (30) but the wake's contribu-
tion to the lift is neglected. The positive and negative CZ peak
values, computed using the quasi-steady approximation, are well above
those computed by unsteady theory. Including the wake in the calcula-
tions generally reduces the loads produced by the blade-vortex inter-
action.

A steady state approximation, computing the lift by the instan-
taneous velocity and angle of attack, is aiso shown by Figure 15. The
peak C£ values are lower and the peak shape is round rather than sharp
when comparcd to the unsteady calculation. The displacement of the
vortex -dth due to the influence of the blade causes the asymmetry in
the solution. Blade loads are generally underestimated assuming
steady state conditions.

Figure 16 compares the positive and negative CZ peak values of
the experiment to the computed values. The experimental values are
shown to be considerably less than the computed values; however, both
experimental and computed results show the negative CL peak to be

smaller than the positive.
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The total variation of Cﬂ through the vortex, ACZ’ plotted
against h/c for constant Fv/Vc ratios is shown in Figure 17. The
value of AC£ increases with increasing vortex strength and with
decreasing magnitudes of h/c. When ACz is compared for the same
positive and negative h/c value, the negative value gives a greater
ACz. This asymmetry is due to the unequal resultant velocity and
angle of attack experienced by the blade as the vortex passes above
or below the blade. It is also due to the displacement of the vortex
path away from the blade for positive h/c values and toward the blade
for negative values.

Figure 18a is a cross plot of Figure 17 where FV/Vc is the
independent variable. Experimental results for the 95 per cent
radius statior are included in the figure. It is clear that the
experimental ACK magnitudes are well below those predicted.

The disagreement in the magnitude of the Cl values can be
explained. The most likely cause is the highly three-dimensional
nature of the flow near the blade tip where Surendraiah's data was
taken. Figure 18b presents the data for the 85 per cent station
(further from the tip) where the AC, values are higher.

In order to obtain an approximate correction for three-dimensional
effects, the spanwise CL distribution on a two bladed rotor at an
arbitrary pitch angle is found using the vortex theory of propellers

as given by McCormick 12. The section lift coefficient at a spanwise
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station is expressed in terms of the blade pitch angle, B8, the down-

wash induced angle of attack, a:, and the 1lift curve slope, a , as:
Cg = 3, (B -a;)

For the infinite aspect ratio case, @y is zero and the ratio of C£

to the two-dimensional value at a spanwise station becomes:

Co/Cppy = 1-0,/8 (31)

The approximate @, is expressed in terms of the rotor solidity, o,
the spanwise position, x, and the Prandtl tip loss factor, F, for

the statically operating rotor as:

2 1/2
a, = 1/2[-oao/8xF + ((cao/8xF) + oaOB/ZxF) / ]

The tip loss factor may be calculated given the number of blades,

B, and the pitch angle at the tip, Bp» as:
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F =2/ cos_1 uxp{—B(l—x)/ZsinBT}

Calculating the CZ ratio of equation 31 for the 85 and 95 per cent

stations:

at 95%  Cp/Cp2q . 0.396

at 85%  C,/ Cppy = 0.460

Considering the tip effects, the computed two-dimensional results
should differ from the experimental values by a factor of 2.5 at the
95 per cent station and 2,2 at the 85 per cent station. Figures 19a
and b compare the theory to the experiment with the tip loss correction
included. Much more satisfactory agreement is obtained for h/c of
0.25 and 0.50, but the predicted results for h/c of 0.1 are well above
the experimental values. Since Surendraiah's results apply to a vortex
whose core radius is 20 per cent of the blade chord, results using a
potential vortex model for an h/c of 0.1 are questionable.

Another contributing-factor to the three- dimensionality of the

flow is the high advance ratio at which the rotor was operated. The
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vortex was generated using a 110 ft/sec tunnel velocity in the
direction of the vortex axis. This velocity is parallel to the

bla’ span for th: 90 degree intersection angle and causes a cross
flow pettern on the blade. The rotationsl velocity, when combined
with tne tunnel velocity, : -esa resultant flow which is directed

29 degrees to the blade at .J00 RPM and 36 degrees at 1500 RPM. The
“lade is effectively swept forward during the interaction. The large
cugles of the flow relative to the chordwise pressure sensors give
reason to question chordwise pressure distribution measurements,
particularly near the tip.

The perfect fluid assumption used in the theory is another
source of error. The maximum vortex induced angle of attack during
the interaction is nearly 15 degrees. At the low Reynolds numbers
used in the tests, approximately 1.5 to 2.2 x 105, fiow separatior
may occur.

10

The theoretical results of Johnson show agreement with
Surendraiah's data except for the case of a § of 90 degrees.
Johnson's theory overpredicts the ACK magnitudes by a factor cof two
for this intersection angle. An infinite aspect ratio wing is used
in his theory.

Tt is obvious from Figures 18 and 19 that :he AC2 is a linear
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function of the nondimensional parameter Fv/Vc. This relatiomnship
is predicted by the analytical model and confirmed by Surendraiah's
results. The total change of CZ is expected to be proportional to
Fv/Vc since the vortex-induced angle of attack also varies with this
parameter. This can be shown by considering t“~ velocity induced by

a vortex on a blade at a distance h and xv from the blade.

2 1/2

2
v, = rv/zn th + X, )

If the irnduced velocity is assumed perpendicular to V, the vortex -

induced angle of attack, for small angles, is given by:

2 2 1/2
a, = [T /27 (h+x ) J/V

The assumption is valid when the ratio of h/xv is small and is the

case when the vortex is not in close proximity to the blade. For a

given X, position, a, varies as:

av « I'V/Vh
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Since constant values of h/c are used, h may be replaced by ¢ in the
proportionality to form the parameter Fv/Vc.

Figure 20 presents the time ratc of change of ACL with h/c for
corstant Fv/c2 ratios. The trends are similar to those of the AC£
variation including the asymmetry, that is, a negative h/c gives a
higher ACK/AT than the same positive value.

Figures 2la and b are cross plots of 20 where l‘v/c2 is the
independent variable. Surendraiah's experimental results for the
95 per cent station are included in Figure 21a and the unpublished
results for the 85 per cent station are presented in Figure 21b. A

2
linear relationship between ACL/AT and the parameter I'/c for constant

/c is predicted by the analytical model. Only two values of I‘v/c2
were used in the experiment but, together with the origin, they do
tend to confirm the linearity.

The time interval, AT, varies directly with ¢/V since the Cl
goes from a positive to negative peak in approximately one chord
length. The relationship of AQLIAT to I‘v/c2 follows since ACz
has been shown to be proportional to rv/Vc.

The magnitudes of ACZ/AT obtained experimentally are below
that predicted by the same factor as the ACL values. This
characteristic indicates the difference lies with the magnitude

of AC£ and not with the time interval. The tip loss correction

factors are also applied to the ACL/AT values ,
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VII. CONCLUSIONS

A numerical method for the computation of unsteady aerodynamic
forces o. a tiin airfoil has been developed. The method has been
compared to the linear theories of Theodorsen for an oscillating
airfoil and Wagaer for an impulsively started airfoil and satisfactory
agreement ob .ained.

The numerical method has been applied to the vortex interaction
problem by calculating the section lift coefficient as a potential
vortex passes near an airfoil representing a helicopter blade section.
The calculated results were compared with experimental measurements

and the following conclusions reached.

1. The investigation proves the feasibility of a
numerical method to predict the unsteady forces
on an airfoil. The method uses discrete point

vortices to represent the airfoil and wake.

2, In blade-vortex interactions, the shape of the
CZ variation as the blade passes near a vortex

which is computed by the numerical model is similar
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to that obtained experimentally. The computed time
interval b:stween peak C£ values is in agreement with

experimental measurements.

The maximum difference in section lift coefficient
as a blade passes tnrough a vortex varies directly
with the vortex strength and inversely with the
velocity and blade chord for a given ratio of blade-

vortex scparation distance to chord.

The time rate of change of the maximum difference
in C£ is a linear function of the ratio of vortex
strength to the square of the blade chord for a
given ratio of blade-vortex separation distance to

chor 1.

Steady state or quasi steady assumptions are
inadequate to predict the unsteady nature of

the 1lift fluctuation during blade-vortex interaction.
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6. Caution should be cxcrcised in applying the
two-dimensional model to the blade-vortex
interaction problem, particularly in the
vicinity of the blade tip. The blade loads
are generally overestimated by the numerical
solution when compared to experimental
measurements. Satisfactory agreement 1is
obtained by correcting the two-dimensional
results for tip effects considering blade-
vortex separation distances greater than the

experimental vortex core radius.

7. The establishment of a long or semi-infinite wake
is not requircd for agreement of the numerical
calculations with the Theodorsen function.
Agreement in phase and magnitude is obtained
during the first cycle of oscillation for

reduced frequencies from zero through ten.

8. In a numerical solution of unsteady airfoil
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problems, the interval between successive time
steps must be sufficiently small for accurate
results. Periodic-lift fluctuations require 60 time
steps per cycle for agreement with Theodorsen
within 8 per cent-at a reduced frequency of ten.
The error is less-at lower reduced frequencies.
Impulsive start-problems require infinitesimal
time increments-at the instant of start but
intervals which give-a 1/10 chord shed vortex
spacing will provide-satisfactory agreement to
the Wagner-function 0.15 chord lengths after

the start.

In general, the-instantaneous chordwise pressure
distributien for an-airfoil in unsteady motion
differs significantly from the steady state

distribution.
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APPENDIX

Use nf the Unmputer Program

The program has comment cards at the beginning to explain most
of the input variables but sume clarification is needed in certain

cases.

First Data card

N (format I5) - number of vortices to be placed on mean

canber line.

MCHECK, NAUX, MREV, NSQ (all format I5) - parameters
used in the routine to solve the
simultaneous equations, explained in

reference (2).

MPRINT (format IS) - equals 1 if user wants y distribution
printed for each time step. If left

blank, only resulting C£ will be printed.



Second Data Card

CERD (format F10.3) - chord length of blade.

VEL (format F10.3) - free stream velocity.

W (format F10.3) - frequency of periodic vertical or
rotational blade motions. If blade
is rigid, make w = 27 and TO = 0.25
nd remove statement at end of deck
“T = T + DELTT." For this case,

AMAX is the fixed angle of attack.

AMAX (format F10.3) - amplitude of periodic angle of attack

motion (radians).

AX1S (format F10.3) - position of the axis of rotation,
measured downstream of mid chord

in semichord lengths.

MT (format 110) - number of time steps.
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Third Data Card

HMAXC (format F10.3)

TO (format F10.8)

ZC (format F10.3)

XC (format F10.3)

GAMV (format F10.3)

Following N Data Cards

74

amplitude of periodic plunging motion

in chord lengths.

initial time, see notes on w above

for fixed blade.

initial vertical position of vortex,

ho/c.

initial horizontal position of vortex,

Xo/c.

strength of vortex.

- for cambered blade sections, the
next N data cards are the z
coordinates of the mean camber line
at the control point positions.

For zero camber, place N blank

data cards here.
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The program has been made flexible to consider both steady and
unsteady problems. The simple steady state prchlem of a cambered
thin airfoil at an angle of attack can be solved by using one time
step. Periodic airfoil motions without the influence of the vortex
are made by setting GAMV equal to zero. The impulsively started
airfoil problem can be solved with a miror modification making the
airfoil go from zero angle of attack to some value during the first
time step and holding a constant from that time on.

The output is self-explanatory except for a few items. The
vortex position x is in chord lengths from the mid-chord. The
column entitled "mid-chord alpha'" is the instantaneous angle of
attack induced at the blade's mid-chord including the effect of
the vortex.

It is noted that the dimension statement fixes the amount of
storage space in use. At present, 10 is the maximum number of

bound vortices and 150 is the maximum number of time steps.



PROGRAM FLOW CHART FOR AIRFOIL-VORTEX INTERACTION

//Inputs data 1including
initial vort=x position
and no. of time steps, M

i

Computes bound vortex and
control point positions

|

Prints input data and
bound vortex locations

T ———

m>1

t > 4

Computes matrix coefficients Computes matrix coefficients
including vortex effect including vortex and wake
‘ effects
| B
Solves matrix for Solves matrix for unsteady +
steady y distribution Yy distribution

Computes C2 and Cm

!

Prints wake length, vortex
position, a_, C,, Cm’ and

y distribution

R—

Computes new vortex position

using frez stream and induced
velocities

—
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// 'P58654T=1004R=4000,NASA"'y '"RUDHMAN W E'
// EXEC FWCLG
//5YSIN DD =
PROGRAM DEVELOPED TO SOLVE FOR VORTICITY DIST. COMPUTES THE
GEOMETRIC COEFFICIENTS A(l,J) AND SOLVES THE SIMUL EQUATIONS BY
BANACHIEWICZ-CROUT ALGORITHM WITH SUPPLEMENTAL ROUTINES.
READ IN INSTRUCTIUONS ceavcecnccncasn
N=NUMBER OF EQUATIONS TU BE SOLVED.
CHRD = CHORD LENGTH OF AIRFOIL
VEL = FREE STREAM VELOCITY
W = FREQUENCY UF OSCILLATIOUN
AMAX = MAX ANGLE OF ATTACK
AXIS = POSITION OF AXIS COF ROTATION
MT = NUMBER OF TIME STEPS
HMAXC = MaX VERTICAL OUSCILLATION AMPLITUDE
TO = INITIAL VIME
2C = INITIAL VALUE OF H/C
XC = INITIAL VALUE OF X/C
GAMY = PASSING VORTEX STRENGTH
Z(1) = MEAN CAMBER LINE COORDINATES AT THE CONTROL POINTS
DIMENSION A(10411)9G(10+11)4sH(10411)yX(11),B(10,11),
2Y110),C110)92(10)5D(150)+GAM(150),DELTX(10),DELTZ(10),
3 XN{10,150),6GDX(10),VELIA(150)y, X1(10,150),211(10,150),
3 ALPA(10)4,ALPAD(10)yRVEL({10),CNA(1C)sXGAM(10,150)
4 READS064NyMCHECKyNAUX s MREVyNSQyMPRINT
IF(N) 200,800,406
406 READ 751y CHRDyVEL W, AMAX AXIS o MT
READ 752y HMAXC+TOyZ2Cs XCoGAMYV
NP1=N+1
NM1=N-1
DO 2 I=1,N
READ 799, Z(1)
2 CONTINUE
DU 55 I=14N
X(I) = (CHRD/(4.*N))+ (CHRD/N)*(I-1)
ClI) = ((3.%CHRD)/(4.%N)) + (CHRD/N)*(I-1)
55 CONTINUE
RFREQ = (W*(CHRD/2.0))/VEL
10 = CHRD=*ZC
X0 = CHRD*XC
HMAX = CHRD*HMAXC
PRINT 500y VELyWsRFREQsCHRDyGAMV,2C,4XC
DELTT = CHRD/(30.*VEL)
SPC = VEL*DELTT/CHRD
PRINT 508, DELTT,SFC,AXIS
DO 400 I=1,NM1
DELTX(I)= X(I+1)=-X(1)
DELTZ(I)=Z(1+1)=-2(1)
400 CONTINUE

aEelaNalaNeslsNaNeNeEaNelalasRaR Xl

DELTX(N) = DELTX(NM1)
DELTZ(N) = DELTZ(NM]1)
T =70

DO 902 M=14MT

MM1 = M-]

MM2 = M-2

S = MM1*DELTT*VEL/CHRD
IF (M=-2) 84,10,85

84 PRINT 502

10 00 & I=1,4N
DO 7 J=1,4N
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81

7
5

407
408
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IF{MmM-1) 83,83,81

A{IosJ) = 100 /7(6.283%(C(I)=X(4)))

60 TO 7

A(Isd) = (1a00/(6.283%(CUI)=X(J))))+ (1.00/(6.283%(VEL*DELTT+
2(CHRD=C(I)))))

CUNT INUE

CONTINUE

IF{M=2) 40744C7,85

DO 408 I=1,N

PRINT 672¢1+(A(14J)eJ=14N)

85 ALPHA = (AMAX/57.296)%SIN(W*T)

ALPHD =ALPHA ¥57.296

ORIVA = W*(AMAX/5T7.296)*CUS(WxT)
ALT=HMAX*SIN(W*T)

DALT= WHMAX*COUS(W*T)

VELIH= -DALT

DO 401 I=1yN
VELIA(TI)=-((CHRD/2.00)*(AXIS+1,00)-C(1))*DRIVA
Z1 = ((CHRD/2.,00)*(AXIS+1.0)-Cl]I))*ALPHA
IF(M=1) 4044404,405

404 XI(I4M) = XO - C(1)

405

409

401
94

3

11

91

93
95

12
15

86

Z1ItIsM) = 20 - 21 + 211)

GO T0 409

XI(IsM) = XI(IsMM1) + ((VEL+BVTVX+VWTX)*DELTT)

ZIT(I4M) = ZII(TIeMML) + ((BVTVZ+VWTZ)=DELTT)

RSQ = ZIT(IsM)*ZIT(IyM) + XI(IsM)EXI(I4M)

VX ==(—-GAMV/6.283)*(Z11(]1yM)/RSQ)

VZ = (-GAMV/6.283)*(XI(I1sM)/RSQ)

ANG = (VZ/{VX+VEL))

ALPA{]1) = ATAN(ANG) + ALPHA

ALPAD(!) = ALPA(I) * 57,296

RVEL(I) = SQRTUVZ=VZ+{VEL+VX)*(VEL+VX))

CONTINUE

IF{M-2) 95,91,9

DO 11 I=1sN

SUMD = 0.00

DO 3 LT=1,MM2
DILT)=(GAM(M=-LT)-GAM({MML1~LT))/(6.283%(VEL*(LT+1)*DELTT+
2{CHRD-C(I1))))

SUMD = DI(LT)+SUMD

CONTINUE

A{TI,NP1) = RVEL(I)*SIN(ALPA(I)—{DELTZ{I)/DELTX(I)) )+ (GAM{MM]L)/
2164283 (VEL*DELTT+(CHRD-C(I))))) -SUMD
4+VELIA(1)+VELIH

CONTINUE

GO TO 15

DO 93 I=1,N

AUIsNPl) = RVEL{I)*SIN(ALPA(I)=-(DELTZ(I)/DELTX(1)))
3+GAM(1)/(6.283*(VEL*DELTT+(CHRD-C(1))))
G+VELIA(I)+VELIH

CONTINUE

GO TO 15

D0 12 I=1,N

ACIyNPL) = RVELII)*SIN(ALPA(TI)-(DELTZ(I)/DELTX(I)))
CONTINUE

CARD 15 BEGINS THE ROUTINE TO COMPUTE THE VORTICITY DISTRIBUTION
BY SOLUTION OF THE SIMULTANEUUS EQUATIONS. THE OUTPUT IS GDX(1).
GAM(M) = 0.00

DO 13 I=1,4N

GAMIM) = GDX(I1)+GAM(M)
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410

415

411
414

413

17

12

420

14

900

901

XN(TyM)=G0DX(1T)

CUNT INUE
BVTVX = 0.00
8vivZz = 0.00

DU 410 J=1,N

VXTI =(GDX(J)/6.283)%(Z211(JeM)/KSQ)

VII = =(GUX(J)/6.283)%{(XI(JyM)/RSQ)

BVIVX = VXI + BVTVX

BVTV. = VZI + BVTVZ

CUNT INUE

SUMWX = 0.00

SUMWZ = 0.00

ViWT 2 0.00

VWTX 0.00

W = Z11(NyM)

IF(M=-2) 413,414,415

D0 411 LT = 1,MM2

XW = X0 - CHRD + (VEL*DELTT)*(M-LT-2)

RSQW = XW*XW +ZW*ZW

SUMWX = =((GAM(M=LT)-GAM{MM]I-LT))*ZW/(6.283%RSQW) ) +SUMWX
SUMWZ = =~(({GAM(M-LT)-GAM(MM]1-LT))*XW/(6.283%RSQW) )+SUMWZ
CONT INUE

XW = XU - CHRD +(VEL*DELTT)*MM2

RSQW = XWXXW + ZWxIW
VATX = =((GAM{M)-GAM(MML))*/W/(6.283 *= RSQW)) +SUMWX
VWTZ = —((GAM(M)=-GAM(MML ) )*=XW/(6.283%RSQW) )+SUMNWZ

CL = {2.00%¥GAM{M) )/ (VEL%*CHRD)

XGAM(14M) = XN(L1oMIF({CHRD/2.)%{ 1 +AXIS)I=X(1))

DO 17 I=2,4N

XGAM{IosM) = XN(IsM)*((CHKD/2.)%(1e+AXIS)=X(I1))+XGCAM({I-1
CONTINUE

ELM = 2.%XGAM(NyM)/{VEL*CHRD%CHRD)
IF(M=-1)900,900,72

CNA(1) = (XN(1lyM)=-XN(14MM1))/DELTT

DO 420 1I=24N

CNACT) = ((XNCIyM)=XN(I,MM1))/DELTT)+CNA(I-1)
CONTINUE

CN =0.00

CM8 = 0.00

DO 14 I=1,N

CN = CNA(I)=*DELTX(I) + CN

CMB = ((XGAM(IsM)=-XGAM(I yMM1))/DELTT)®*DELTX(I) +CMB
CONTINUE

ELMI = (2./(VEL*VEL*CHRUD*CHRD) )*CMB

CNL = (2.00%CN)/(VEL*CHRD*VEL)

CM = ELM +ELMI

TOT = CL +CNL

GO TO 901

I=N/2

XR = XI{(I4M)/CHRD

IR = ZI1(I4M)/CHRD

PRINT 501

PRINT 510y C(1)4C(2)9C(3),C(4)4C(5)5C(6)

PRINT 503y X{1)9X(2)3X(3)y X(G4)ygX(5)yX(6)

PRINT 5059 MySeXReZRyALPAD(]1)ELM,CL

PRINT 5079 GDX{1)+GDX(2)46DX(3)4GOX(4)GOX(5),GDX(6)

GU TO 902

I=N/2

XR = XI(I4M)/CHRD
IR = Z1I(I4M)/CHRD
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PRINT 5044MyS, XK y IR »ALPAD( 1)y CM,CL s CNL s TUT

PRINT 509y GDX(1)96DX(2)43GDX(3),6DX14),GDX(5),60X(6)

902 CONTINUE

GU TO 4

500 FORMAT (1H1 49X lOHVELUCITY =4F104295X+6HFREQ =4F106345X, 8H
2R FREQ =4F64344Xy6HCHRD =9F64355X9 26HVIRTEX STRENGTH (FT-SEC) =,F1
30e3//79Xy YIHINITIAL Z =9F1l0e3y X L1HINITIAL X =,F1043)

501 FURMAT(1HLy7TXe6HNUMBER,11Xy2HWLy 6BXy6HVORTEX 46X 6HVORTEX, 3X,
29HMID CHORD (4 Xy BHMUMENT C o 7X 9 SHGAMMA, 4X o BHTIME DEP 46X SHTUTAL/
335Xy 6HPOSe X9 b6X96HPUSe 293Xy SHALPHA8BX, THAT AXIS¢8X.6HLIFT CyaX,
46HLIFT Cyb6Xy6HLIFT C/)

502 FURMAT(1HO,15Xy15HURIGINAL MATRIX)

510 FORMAT({1IH ,'CONTROL POINT LUCATIONS.',6F10.5)

503 FURMAT(1H 4 'PUINT VORTEX STRENGTHS AT POSITIUNS.'46F10.5,//)

504 FORMAT(1H 41104F1848y7FH1245)

505 FURMAT(1H 4110sF18.545F1245)

506 FURMAT(615)

507 FORMATL{1IH 933X,5F15.5)

508 FURMAT (1H ¢ 3Xs'DELTT ='3F15.5,5Xy '"WAKE ELEMENT SPACING =*'4F15.5,
25Xy "AXIS POSITIUN =%4F10e3,' SEMI-CHORDS',/)

509 FURMAT(1H 433Xy5F15.2)

672 FURMAT(1HO915+4X912F10e5/(10X912F10.5))

680 FORMATILH o 7X9'GUX 3129 ="3F15.5,6X3F14.5,12X3F15.5910X9F15.5,
210Xy F8.4)

751 FORMAT (F1l0.5+4F10.3,110])

7152 FORMAT (F10e3y F10.8,93F10.3)

799 FORMAT (F10.4)

800 STOP
END
/%
//DATA.INPUT DD *
6
1.00 2.00 6.283 0.00 0.50 50
0.00 0.25 1.0 =2.50 2.00

/ *



